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Abstract. We develop a new method of solving the Bethe-Salpeter (BS) equation in Minkowski space.
It is based on projecting the BS equation on the light-front (LF) plane and on the Nakanishi integral
representation of the BS amplitude. This method is valid for any kernel given by the irreducible Feynman
graphs. For massless ladder exchange, our approach reproduces analytically the Wick-Cutkosky equation.
For massive ladder exchange, the numerical results coincide with the ones obtained by Wick rotation.

PACS. 03.65.Pm Relativistic wave equations – 03.65.Ge Solutions of wave equations: bound states –
11.10.St Bound and unstable states; Bethe-Salpeter equations

1 Introduction

The BS equation [1] is an important tool to study the rel-
ativistic bound-state problem in a field theory framework
(see [2] for review). For a bound state of total momentum
p and in case of equal-mass particles, it reads

Φ(k, p) =
i2

[

(p2 + k)2 −m2 + iε
] [

(p2 − k)2 −m2 + iε
]

×
∫

d4k′

(2π)4
iK(k, k′, p)Φ(k′, p), (1)

where Φ is the BS amplitude, iK the interaction kernel,
m the mass of the constituents and k their relative mo-
mentum. We will denote by M =

√

p2 the total mass of
the bound state, and by B = 2m−M its binding energy.

It was recognized from the very beginning that, when
formulated in Minkowski space, the BS equation has sin-
gularities which make difficult to find its solution. These
singularities are due to the free propagators of the con-
stituent particles

G
(12)
0 (k, p) = G

(1)
0 G

(2)
0 =

i

(p2 + k)2 −m2 + iε

i

(p2 − k)2 −m2 + iε
(2)

but can also result from the interaction kernel itself.
To overcome this difficulty, Wick [3] formulated the BS

equation in the Euclidean space, by rotating the relative
energy in the complex plane k0 → ik0. This “Wick ro-
tation” led to a well-defined integral equation which can

be solved by standard methods. Most of practical appli-
cations of the BS equation have been achieved using this
technique [2] and recent developments make its solution
a trivial numerical task [4]. Another method —the vari-
ational approach in the configuration Euclidean space—
was recently developed in [5]. Whereas the total mass of
the system is unchanged by the Wick rotation, the original
BS amplitude is however lost and the “rotated” one can no
longer be used in calculating other physical observables,
like, for instance, form factors.

Thus, fifty years after its formulation, obtaining the BS
solutions in the Minkowski space is still a field of active
research. A successful attempt was presented in [6], based
on the Nakanishi integral representation of the BS func-
tion [7]. However, formal developments displayed in [6] are
a matter of art and the obtained equation has been derived
and solved only for the ladder kernel. Another approach in
Minkowski space for separable interactions was developed
in [8] and applied to the nucleon-nucleon system. On the
other hand, an equation obtained by projecting the origi-
nal BS equation on the LF plane, was derived and solved
in [9]. An approximate LF kernel was there obtained as
an expansion of the BS one but the original BS amplitude
has not been reconstructed from its LF projection.

The aim of this paper and of the forthcoming one is to
present a new method of solving the BS equation without
using the Wick rotation. Our method is based on an inte-
gral transform of the initial equation which removes the
singularities of the BS amplitude. This integral transform
consists in projecting the BS equation on the LF plane,
defined by ω ·x = 0 with ω2 = 0 [10]. The particular choice
ω = (ω0,ω) = (1, 0, 0,−1) results in the standard LF form
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t+ z = 0 and in the LF projection used in [9]. In our ap-
proach, the BS amplitude maps onto the LF wave function
while the transformed equation —in contrast to [9]— is de-
rived without any approximation. This equation remains
equivalent to the original BS one, therefore providing the
same binding energies, and the initial BS amplitude is
easily reconstructed from its solution. Although the re-
sults presented here concern only the ladder kernel, our
method is not restricted to a particular interaction. For
more complicated kernels, e.g. the cross-box, calculations
become more lengthy, but the additional difficulties are
due to evaluating the Feynman diagram itself and not to
the solution of the equation.

In order to present the method more distinctly, we con-
sider the case of zero total angular momentum and spinless
particles.

The plan of the paper is the following. In sect. 2, we
give the integral transform used to project the BS equa-
tion on the LF plane and we derive a new and equivalent
equation. In sect. 3, the corresponding ladder exchange
kernel is calculated analytically. In sect. 4, the numeri-
cal solutions for the ladder case are found and compared
to the results obtained using other methods in Euclidean
space. Section 5 contains concluding remarks. Details of
the calculations are given in appendices A, B and C. The
results concerning cross-box kernels are presented in the
next paper [11].

2 Projecting the BS equation on the LF plane

Our method is inspired by an existing relation between the
BS amplitude Φ(k, p) and the two-body LF wave function
ψ(k⊥, x). This wave function can be obtained by project-
ing the BS amplitude on the LF plane. We will apply
below the LF projection to the BS equation in Minkowski
space. Though this projection can be considered as a for-
mal transform, we will start by reviewing its derivation,
in order to show more clearly how the singular behaviour
of Φ(k, p) gives rise to a non-singular ψ(k⊥, x).

BS amplitude is defined as the matrix element between
the vacuum 〈0| and a state |p〉 of the time-ordered product
of two Heisenberg operators:

Φ(x1, x2, p) = 〈0|T {ϕ(x1)ϕ(x2)} |p〉. (3)

In general, the state vector |p〉 can be taken in different
representations. In the LF quantization, it has the form
(see, e.g., eq. (3.1) from [10])

|p〉 =
∫

ψ(k1, k2, p, ωτ)2(ω · p)δ(k1 + k2 − p− ωτ)dτ

×(2π)3/2 d3k1

(2π)3/2
√
2εk1

d3k2

(2π)3/2
√
2εk2

a†
k1
a†

k2
|0〉

+ . . . , (4)

where a†
k
is the creation operator and εk =

√
m2 + k2. The

two-body Fock component ψ is shown explicitly, whereas
the higher ones are implied. All the four-momenta are

on the corresponding mass shells k2
i = m2, p2 = M2,

(ωτ)2 = 0 and fulfill the conservation law

k1 + k2 = p+ ωτ.

Projecting the BS amplitude Φ(x1, x2, p) on LF plane
means that its arguments are constrained to ω · x1 = ω ·
x2 = 0. Coming to the momentum space, we still keep this
constraint. Let us evaluate the quantity

J(k1, k2, p) ≡
∫

d4x1d
4x2δ(ω · x1) δ(ω · x2)e

i(k1·x1+k2·x2)

×Φ(x1, x2, p). (5)

We substitute here the right-hand side of (3) with |p〉 given
by (4). On the LF plane the Heisenberg field ϕ(x) in (3)
turns into the Schrödinger (free) one, represented as

ϕ(x) =

∫

(

a†
k
e−ik·x + ake

ik·x
) d3k

(2π)3/2
√
2εk

.

Then the two-body component ψ only survives in |p〉 and
J(k1, k2, p) is expressed through it.

Now express Φ(x1, x2, p) in (5) through its Fourier
transform. Translational invariance imposes Φ to have the
form

Φ(x1, x2, p) =
1

(2π)3/2
Φ̃(x, p) e−ip·(x1+x2)/2,

where Φ̃(x, p) is the reduced amplitude and x = x1−x2. It
is expressed through the momentum space BS amplitude:

Φ̃(x, p) =

∫

d4k

(2π)4
Φ(k, p) e−ik·x,

where Φ(k, p) satisfies the BS equation (1). Substituting
theses formulas in (5), we find that J(k1, k2, p) is expressed
through the integral

∫∞

−∞
Φ(k+ βω, p)dβ. Comparing two

expressions, we obtain the relation [10]

ψ(k⊥, x) =
(ω · k1)(ω · k2)

π(ω · p)

∫ ∞

−∞

Φ(k + βω, p)dβ. (6)

In the standard LF approach the β-integration in (6) turns
into the k−-integration with k− = k0−kz. The wave func-
tion ψ(k⊥, x) in (6) is parametrized in terms of the stan-
dard LF variables k⊥, x (see [10]):

k⊥ = k1⊥ − xp⊥, x =
ω · k1

ω · p . (7)

The ⊥-components are orthogonal to ω.
The LF wave function ψ, as any wave function, has no

singularities in physical domain. Equation (6) can thus be
viewed as an integral transformation of the BS amplitude
leading to a non-singular function. This suggests to apply
this transformation to the BS equation itself:
∫

dβΦ(k + βω, p) =

∫

dβG
(12)
0 (k + βω, p)

∫

d4k′

(2π)4
iK(k + βω, k′, p)Φ(k′, p),

(8)
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in order to obtain an equivalent equation free of singular-
ities. This constitutes the key point of this work.

Apart from the trivial kinematical factor (ω·k1)(ω·k2)
π(ω·p) ,

the left-hand side of (8) is the LF wave function ψ,
eq. (6), whereas the right-hand side still contains the “non-
projected” BS amplitude Φ(k′, p). To make the LF wave
function appear explicitly in the right-hand side too, and
thus formulate an equation in terms of ψ, we would need
to invert eq. (6). Instead, we substitute, in both sides of
eq. (8), the BS amplitude in terms of the Nakanishi inte-
gral representation [2,7]:

Φ(k, p) =
−i√
4π

∫ 1

−1

dz′
∫ ∞

0

dγ′

× g(γ′, z′)
[

γ′ +m2 − 1
4M

2 − k2 − p · k z′ − iε
]3 . (9)

In a more general form of this representation, the denomi-
nator appears in the degree 2+n, where n is a dummy in-
teger parameter. For simplicity, we chose here its minimal
value n = 1. Greater value of n may result in a smoother
solution [6].

A similar representation exists for non-zero angular
momentum. It is valid for a rather wide class of solutions
which are consistent with the perturbation-theoretical an-
alyticity. This leads (see appendix A for the detail of the
calculations) to the following equation for the weight func-
tion g(γ, z):

∫ ∞

0

g(γ′, z)dγ′
[

γ′ + γ + z2m2 + (1− z2)κ2
]2 =

∫ ∞

0

dγ′
∫ 1

−1

dz′ V (γ, z; γ′, z′)g(γ′, z′) . (10)

This is just the eigenvalue equation of our method. It is
equivalent to the initial BS equation (1). The total mass
M of the system appears on both sides of eq. (10) and is
contained in the parameter

κ2 = m2 − 1

4
M2. (11)

As calculations [6] show, g(γ, z) may be zero in an interval
0 ≤ γ ≤ γ0. The exact value where it differs from zero is
determined by eq. (10) itself.

The kernel V , appearing in the right-hand side of
eq. (10), is related to the kernel iK from the BS equa-
tion by

V (γ, z; γ′, z′) =
ω · p
π

∫ ∞

−∞

−iI(k + βω, p)dβ
[

(p2 + k + βω)2 −m2 + iε
]

× 1
[

(p2 − k − βω)2 −m2 + iε
] , (12)

with

I(k, p) =

∫

d4k′

(2π)4
iK(k, k′, p)

[

k′2 + p · k′z′ − γ′ − κ2 + iε
]3 . (13)

The singularities in the BS equation are removed by
the analytical integration over β. Equation (10) is valid
for an arbitrary kernel iK, given by a Feynman graph.
The particular cases of the ladder kernel and of the Wick-
Cutkosky model [3,12] are detailed in the next section and
for the cross-ladder kernel in the next paper [11]. Once
g(γ, z) is known, the BS amplitude can be restored by
eq. (9).

The variables (γ, z) are related to the standard LF
variables (7) as γ = k2

⊥, z = 1−2x. The LF wave function
can be easily obtained by

ψ(k⊥, x) =
1√
4π

∫ ∞

0

x(1− x)g(γ′, 1− 2x)dγ′
[

γ′ + k2
⊥ +m2 − x(1− x)M2

]2 .

(14)
Equation (10) can be transformed into the equation for

the LF wave function ψ(k⊥, x) (eq. (A.6) in appendix A),
though this requires inverting the kernel in the left-hand
side of (10). The initial BS equation (8), projected on the
LF plane, can be also approximately transformed (see ap-
pendix B) into the LF equation:

(

k2
⊥ +m2

x(1− x) −M
2

)

ψ(k⊥, x) =

−m2

2π3

∫

ψ(k′⊥, x
′)VLF (k

′
⊥, x

′;k⊥, x,M
2)

d2k′⊥dx
′

2x′(1− x′)
(15)

with the LF kernel VLF given, for ladder exchange, by
eq. (B.3) in appendix B.

It is worth noticing that the LF wave function (14) is
different from the one obtained by solving the ladder LF
equation (15), as was done, e.g., in ref. [13]. The physi-
cal reason lies in the fact that the iterations of the lad-
der BS kernel (Feynman graph) and the ladder LF ker-
nel (time-ordered graphs) generate different intermediate
states. The LF kernel and its iterations contain in the
intermediate state only one exchanged particle, whereas
the iterations of the ladder Feynman kernel also contain
many-body states with increasing number of exchanged
particles (stretched boxes). This leads to a difference in
the binding energies, which is however small [13]. For-
mally, this difference arises because of the approximations
—explained in appendix B— which are made in deriving
eq. (15) from (8). However, for a kernel given by a finite
set of irreducible graphs, both BS (1) and LF (15) equa-
tions are already approximate and it is not evident which
of them is more “physical”. The physically transparent in-
terpretation of the LF wave function makes it often more
attractive.

3 Ladder kernel

We calculate here the kernel V (γ, z; γ′, z′) of eq. (10) for
the ladder BS kernel, which reads

iK(L)(k, k′, p) =
i(−ig)2

(k − k′)2 − µ2 + iε
. (16)



4 The European Physical Journal A

We substitute it in eq. (13), then substitute (13) in (12)
and calculate the integrals. The details of these calcula-
tions are given in appendix C. The result reads

V (L)(γ, z; γ′, z′) =

{

W (γ, z; γ′, z′), if −1≤z′≤z≤1,
W (γ,−z; γ′,−z′), if −1≤z≤z′≤1,

(17)
where W has the form

W (γ, z; γ′, z′) =
αm2

2π

(1− z)2
γ + z2m2 + (1− z2)κ2

× 1

b22(b+ − b−)3
[

(b+ − b−)(2b+b− − b+ − b−)
(1− b+)(1− b−)

+2b+b− log
b+(1− b−)
b−(1− b+)

]

(18)

with α = g2/(16πm2) and

b± = − 1

2b2

(

b1 ±
√

b21 − 4b0b2

)

,

b0 = (1− z)µ2,

b1 = γ + γ′ − (1− z)µ2 − γ′z − γz′
+(1− z′)

[

z2m2 + (1− z2)κ2
]

,

b2 = −γ(1− z′)
−(z − z′)

[

(1− z)(1− z′)κ2 + (z + z′ − zz′)m2
]

.

In the case µ = 0 (which constitutes the original Wick-
Cutkosky model [3,12]) we get, in particular, b0 = b− = 0
and eq. (18) obtains a simpler analytical expression that
gives, for the kernel,

V (L)(γ, z; γ′, z′) =
αm2

2π

1
[

γ + z2m2 + (1− z2)κ2
]

× 1
[

γ′ + z′2m2 + (1− z′2)κ2
]

×







θ(z − z′)
[

γ + γ′ (1−z)
(1−z′) + z2m2 + (1− z2)κ2

]

(1− z)
(1− z′)

+
θ(z′ − z)

[

γ + γ′ (1+z)
(1+z′) + z2m2 + (1− z2)κ2

]

(1 + z)

(1 + z′)







.

(19)

We search for a solution of (10) in the form

g(γ, z) = δ(γ) g(z). (20)

The integration over γ′ in both sides of eq. (10) drops out.
By setting γ′ = 0 everywhere, the kernel (19) turns into

V (L)(γ, z; γ′ = 0, z′) =
1

[

γ + z2m2 + (1− z2)κ2
]2

× α

2π

m2

[

z′2m2 + (1− z′2)κ2
]

×
[

(1− z)
(1− z′)θ(z − z

′) +
(1 + z)

(1 + z′)
θ(z′ − z)

]

.

The prefactor

1
[

γ + z2m2 + (1− z2)κ2
]2

is the same in both sides of eq. (10) and cancels. The
γ-dependence disappears thus from the equation which
takes the simplified form

g(z) =
α

2π

∫ 1

−1

dz′ Ṽ (z, z′)g(z′) (21)

with

Ṽ (z, z′) =
m2

m2 − 1
4 (1− z′

2)M2

×
{

(1−z)
(1−z′) , if −1 ≤ z′ ≤ z ≤ 1,
(1+z)
(1+z′) , if −1 ≤ z ≤ z′ ≤ 1.

(22)

It exactly coincides with the Wick-Cutkosky equation [2,
3,12].

Notice that in the µ = 0 case the LF wave function (14)
obtains the simple form [14,15]

ψ(k⊥, x) =
x(1− x)g(1− 2x)

√
4π
[

k2
⊥ +m2 − x(1− x)M2

]2 (23)

with a known analytic dependence on k⊥ variable.

4 Numerical results

Equation (10) with the ladder kernel (17) has been solved
by using the same method as in [13], i.e. by expanding the
solution g on a spline basis [16]

g(γ, z) =
∑

ij

gijSi(γ)Sj(z) (24)

over a compact integration domain Ω = [0, γmax] ×
[−1,+1] and validating the equation at some well-chosen
ensemble of collocation points {γ̄i, z̄j} ⊂ Ω. The unknown
coefficient gij are determined by solving the resulting gen-
eralized eigenvalue matrix equation

λ B(M)g = A(M)g (25)

in which matrices B and A represent, respectively, the
integral operators of the left- and right-hand sides of (10).
They both depend on the total mass of the system M
through the parameter κ defined in (11) and the solution
of the equation is provided by the values of M such that
λ(M) = 1. For the ladder kernel, the coupling constant α
appears linearly in A and the problem can be formulated
equivalently

1

α
B(M) g =

A(M)

α
g
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10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3

ε
6.710

6.715

6.720

6.725

α

µ=0.5 B=1.0

Fig. 1. Dependence of the coupling constant on the ε param-
eter of (26) for µ = 0.5 and B = 1.0.

in which the inverse of the coupling constant appears as
the eigenvalue of a linear system parametrised by M .

It turns out that the discretized integral operator B
has very small eigenvalues. They are unphysical but make
unstable the solution of the system (25). To regularize B,
we have added a small constant ε to its diagonal part [17]
of the form

Bij → Bij + ε Nij , (26)

where Nij is the equivalent of the Kronecker symbol δij
in the bidimensional spline basis. This procedure allows
us to obtain stable eigenvalues with an accuracy of the
same order than ε until values of ε as small as 10−12. We
have plotted in fig. 1 the dependence of the coupling con-
stant on ε for a system with binding energy B = 1.0 and
µ = 0.5. The convergence is very fast and a value ε = 10−4

is enough to ensure a 4-digits stability on α. The real ac-
curacy of a calculation is actually not determined by ε but
rather by the grid parameters which were kept fixed in the
results of fig. 1. These are essentially the value γmax and
the number of intervals Nγ and Nz in each direction of Ω.

By keeping ε = 10−6 fixed and varying the grid param-
eters to ensure four-digits accuracy, we obtain for µ = 0.15
and µ = 0.5 the values displayed in table 1. They corre-
spond to γmax = 3, Nγ = 12, Nz = 10. With all shown
digits, they are in full agreement with the results we have
obtained, similarly to [13], by using the Wick rotation and
the method of [4]. Increasing ε to 10−4 changes at most
one unit in the last digit. This demonstrates the validity
of our approach.

We would like to remark the striking stability of the
results with respect to Nγ , the number of grid points on γ.
The value Nγ = 12 used in our calculations was only for
drawing purposes. In fact, the accuracy in calculating the
eigenvalues in table 1 is reached with Nγ = 1. This means
that from the practical point of view our method leads to
an equation whose solution is mostly one-dimensional and
a number of grid points of the order of 10 on the z-variable
is enough to ensure an accuracy better than 10−4.

Table 1. Coupling constant values as a function of the binding
energy for µ = 0.15 and µ = 0.5 obtained with γmax = 3,
Nγ = 12, Nz = 10 and ε = 10−6.

B α (µ = 0.15) α (µ = 0.50)

0.01 0.5716 1.440
0.10 1.437 2.498
0.20 2.100 3.251
0.50 3.611 4.901
1.00 5.315 6.712

The weight function g for a system with µ = 0.5 and
B = 1.0 is plotted in fig. 2. It has been obtained with
ε = 10−4 and the same grid parameters than in table 1.
Its γ-dependence is not monotonous and has a nodal struc-
ture; the z-variation is also non-trivial. We have remarked
a strong dependence of g(γ, z) relative to values of the ε
parameter smaller than ∼ 10−4, in contrast to high sta-
bility of corresponding eigenvalues. However, the corre-
sponding BS amplitude Φ and LF wave function ψ, ob-
tained from g(γ, z) by the integrals (9) and (14), show the
same strong stability as the eigenvalues.

The BS amplitude in Minkowski space in the rest
frame p = 0 is shown in fig. 3. The k-dependence is
rather smooth but the k0-dependence, due to poles of
the propagators in (1), exhibits a singular behaviour at
k0 = ±

(

εk ± M
2

)

, i.e. moving with k and M .
Note that our solution gives also the BS amplitude

in Euclidean space, by substituting in (9) k0 = ik4. The
Euclidean BS amplitude ΦE(k4, k) was found in this way
in [18]. It is indistinguishable from the one obtained by a
direct solution of the Wick-rotated BS equation.

The corresponding LF wave function ψ(k⊥, x) is shown
in fig. 4. It is very similar to the LF wave functions dis-
played in ref. [13], though they obey different dynamical
equations. It has a simpler structure than g(γ, z) in both
arguments.

5 Conclusion

We have developed a method for solving the Bethe-
Salpeter equation in the Minkowski space, i.e. without
making use of the Wick rotation.

The method is based on an integral transform of the
original equation which removes its singularities. It is mo-
tivated by the LF projection (6) of the BS amplitude.

The transformed equation is formulated in terms of
the weight function of the Nakanishi integral representa-
tion [7], from which the original BS amplitude both in
Minkowski and Euclidean spaces as well as corresponding
LF wave function can be easily reconstructed.

The equation has been obtained for scalar particles and
applied to the ladder kernel. For zero-mass exchange the
Wick-Cutkosky model is derived. For massive exchange,
numerical solutions have been found. The binding ener-
gies are in full agreement with the preceding results ob-
tained in the Euclidean space. The singular BS amplitude
in Minkowski space has been displayed.
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Fig. 2. Function g(γ, z) for µ = 0.5 and B = 1.0. Left: vs. γ for fixed values of z and right: vs. z for a few fixed values of γ.
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of k⊥.



V.A. Karmanov and J. Carbonell: Solving Bethe-Salpeter equation in Minkowski space 7

Calculation for the ladder exchange confirms the va-
lidity of our approach. Our method can be used for an
arbitrary kernel, given by a Feynman graph. In the fol-
lowing paper [11] it is applied to solve the BS equation
with the cross-box kernel.

The method can be generalized to non-zero angular
momentum and, presumably, to the fermion case. A rela-
tion similar to (6) between the BS amplitude and LF wave
function for the two-nucleon system is discussed in [10,19].

We are grateful to N. Nakanishi for explaining to us the
conditions of validity of his representation (9), to V.I. Ko-
robov for informing about the method for regularizing the ker-
nel (26) and to M. Mangin-Brinet for providing the solutions
of the ladder BS equation in the Euclidean space. Numeri-
cal calculations were performed at Institut du Développement
et des Ressources en Informatique Scientifique (IDRIS) from
CNRS. One of the authors (V.A.K.) is sincerely grateful for
the warm hospitality of the theory group at the Laboratoire
de Physique Subatomique et Cosmologie, Université Joseph
Fourier, in Grenoble, where this work was performed. This
work is supported in part by the RFBR grant 05-02-17482-a
(V.A.K.).

Appendix A. Derivation of eq. (10)

We substitute in eq. (1) the BS amplitude in the form (9)
and apply to both sides the transformation (6). For the
left-hand side this gives

ψ =
1

π

∫ 1

−1

dz′
∫ ∞

0

dγ′
∫ ∞

−∞

dβ′

× −i
[

1/4− (ω · k)2/(ω · p)2
]

g(γ′, z′)
[

γ′ + κ2 − k2 − p · k z′ − β′
(

z′ + 2 (ω·k)
(ω·p)

)

− iε
]3 ,

(A.1)

where β′ = (ω · p)β. As seen from (A.1), ψ depends on
three scalar products k2, p · k and ω·k

ω·p . However, because

of the relation

p · k = 2
ω · k
ω · p

(

k2 −m2 +
1

4
M2

)

,

only two of them are independent. We use the LF vari-
ables (7) and express through them the scalar products:

k2 = m2 − k2
⊥ +m2

4x(1− x) ,

p · k =
1

4
(1− 2x)

(

k2
⊥ +m2

x(1− x) −M
2

)

,

ω · k
ω · p = x− 1

2
.

By means of these relations, LF wave function (A.1) de-
pends on k⊥, x.

It is convenient to introduce other notations:

γ = k2
⊥, z = 1− 2x, κ2 = m2 − 1

4
M2,

so that

k2 = − (γ + z2m2)

1− z2
,

p · k =
z[γ + z2m2 + (1− z2)κ2]

1− z2
,

ω · k
ω · p = −1

2
z (A.2)

and

s =
4(γ +m2)

1− z2
=
k2
⊥ +m2

x(1− x) . (A.3)

The integral (A.1) over β′ is simply calculated by
means of the formula

∫ ∞

−∞

dβ

(βx− y − iε)3 =
iπ

y2
δ(x).

The result of the transformation is given by eq. (14). In
terms of the variables γ, z it reads

ψ(γ, z) =
1

8
√
π

∫ ∞

0

(1− z2)g(γ′, z)dγ′
[

γ′ + γ + z2m2 + κ2(1− z2)
]2 .

(A.4)
Apart from the factor (1−z2)/(8

√
π) (cancelled in the final

equation) it is the left-hand side of eq. (10). Substitution
of (2) and (9) in right-hand side of (8) results in the right-
hand side of eq. (10).

The function ψ(γ, z) in eq. (A.4) is the usual two-body
LF wave function. In terms of variables k⊥, x it obtains
the form (14). The normalization integral reads

N2 =
1

(2π)3

∫

ψ2(k⊥, x)
d2k⊥dx

2x(1− x)

=
1

(2π)3

∫

ψ2(γ, z)
πdγdz

1− z2
.

We would like to emphasize the mathematical nature
of the above transformation. Namely, the integral trans-
formation (6), applied to BS function (9), obtains the
form (A.1). The function ψ there still depends on the
variables k2, p · k, like the initial BS function, but it is
not singular. However, the variables γ ′, z′ in the integrand
g(γ′, z′) and k2, p · k in ψ run over different domains:
0 ≤ γ′ < ∞, −1 ≤ z′ ≤ 1, whereas −∞ < k2 ≤ 0,
−∞ < p · k < ∞. By eqs. (A.2) we replace the variables
k2, p ·k by the new ones γ, z, which, by construction, vary
in the same domain as γ′, z′. In these variables eq. (A.1)
obtains the form (A.4), where the functions g(γ, z) and
ψ(γ, z) before and after integration are now defined in the
same domain, as normally occurs in the integral equations.
Therefore, in new variables γ, z we will find the equation
for g(γ, z) in the domain of its definition.

We separate the factor (1 − z2)/(8
√
π), i.e. introduce

ψ̃ related to ψ as ψ(γ, z) = (1−z2)ψ̃(γ, z)/(8
√
π). That is

ψ̃(γ, z) =

∫ ∞

0

g(γ′, z)dγ′
[

γ′ + γ + z2m2 + κ2(1− z2)
]2 . (A.5)
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Equation (10) can be rewritten for the function ψ̃:

ψ̃(γ, z) =

∫ ∞

0

dγ′
∫ 1

−1

dz′ H(γ, z; γ′, z′)ψ̃(γ′, z′), (A.6)

where

H(γ, z; γ′, z′) =

∫ ∞

0

dγ′′V (γ, z; γ′′, z′)h(γ′′, γ′, z′)

and h(γ′′, γ′, z′) is the kernel of the operator providing
the relation inverse to eq. (A.5), namely

g(γ, z) =

∫ ∞

0

dγ′h(γ, γ′, z)ψ̃(γ′, z).

Numerical calculation of the kernel h(γ, γ ′, z), then
finding H(γ, z; γ′, z′) and solving the equation in the
form (A.6) give the same results as for (10).

Appendix B. Derivation of the ladder LF
equation (15)

We take, for a moment, ω = (1, 0, 0,−1), introduce the
variables k′⊥ = (k′x, k

′
y), k

′
± = k′0 ± k′z and represent the

integration volume d4k′ in the right-hand side of eq. (8) as

d4k′ =
1

2
d2k′⊥dk

′
+dk

′
− = d2k′⊥dx

′ (ω · p)dβ′,

where x′ is defined in (7) and k′− = ω−β
′ (with ω− = 2).

For arbitrary ω eq. (8) obtains the form

∫

dβΦ(k + βω, p) =

∫

dβG
(12)
0 (k + βω, p)

d2k′⊥dx
′

(2π)4

×iK(k+βω, k′+β′ω, p)Φ(k′+β′ω, p)(ω · p)dβ′. (B.1)

According to eq. (1), the BS amplitude Φ(k, p) con-
tains as a factor the product of two free propagators (2).
We separate the propagators, i.e., introduce the vertex
function Γ (k, p):

Φ(k, p) = G
(12)
0 (k, p)Γ (k, p) (B.2)

and substitute (B.2) in the right-hand side of (B.1).
In order to derive the LF equation (15) from (B.1),

we should, integrating over β′, neglect the singularities of
Γ (k′ + β′ω, p), i.e. deal with Γ vs. β′ as with a constant.
That is, we will extract Γ from the integral over β ′ and
introduce it back. This allows the following approximate
transformation of the right-hand side of (B.1) (for short-
ness we show only the β, β′-dependence and do not show
integration over d2k′⊥dx

′):

∫

dβG
(12)
0 (β)K(β, β′)G

(12)
0 (β′)Γ (β′)dβ′ ≈

Γ

∫

dβG
(12)
0 (β)K(β, β′)G

(12)
0 (β′)dβ′ =

Γ

∫

G
(12)
0 (β′)dβ′

∫

G
(12)
0 (β′)dβ′

∫

dβG
(12)
0 (β)K(β, β′)G

(12)
0 (β′)dβ′ ≈

∫

G
(12)
0 (β′)Γ (β′)dβ′
∫

G
(12)
0 (β′)dβ′

∫

dβG
(12)
0 (β)K(β, β′)G

(12)
0 (β′)dβ′=

∫

dβG
(12)
0 (β)K(β, β′)G

(12)
0 (β′)dβ′

∫

G
(12)
0 (β′)dβ′

∫

Φ(β′)dβ′.

The integral
∫

Φ(β′)dβ′ is understood as
∫∞

−∞
Φ(k′ +

β′ω, p)dβ′ and it is related by (6) to the LF wave function
(as well as to the left-hand side of (B.1)). With explicit

expression (2) for G
(12)
0 we find

(ω · p)
∫ ∞

−∞

dβG
(12)
0 (k + βω, p) =

−πi
x(1− x)(s−M2)

,

where s is defined in (A.3). With explicit expression (16)
for K we obtain

(ω · p)2
∫ ∞

−∞

dβG
(12)
0 (k + βω, p)K(k + βω, k′ + β′ω, p)

×G(12)
0 (k′ + β′ω, p)dβ′ =

−πi
x(1− x)(s−M2)

(

−4m2V
(L)
LF

) −πi
x′(1− x′)(s′ −M2)

,

where V is the standard LF ladder kernel (see, e.g., [10]):

V
(L)
LF (k′⊥, x

′;k⊥, x,M
2) =

− 4παθ(x′ − x)
(x′ − x)(sa −M2)

− 4παθ(x− x′)
(x− x′)(sb −M2)

, (B.3)

and

sa =
k2
⊥ +m2

x
+

(k′⊥ − k⊥)
2 + µ2

x′ − x +
k′2⊥ +m2

1− x′ ,

sb =
k′2⊥ +m2

x′
+

(k′⊥ − k⊥)
2 + µ2

x− x′ +
k2
⊥ +m2

1− x .

In this way we derive eq. (15) with the kernel (B.3).

Appendix C. Calculation of the kernel
V(L)(γ, z; γ′, z′), eq. (17)

With the ladder kernel (16) the integral (13) obtains the
form

I(k, p) =
−i16πm2α

(2π)4

∫

d4k′
[

(k′ − k)2 − µ2 + iε
]

× 1
[

k′2 + p · k′ z′ − κ2 − γ′ + iε
]3 ,

where we put g2 = 16πm2α. Using the formula

1

ab3
=

∫ 1

0

3v2dv

[a(1− v) + bv]4
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and replacing k′ by the new integration variable q by the
relation

k′ = q + (1− v)k − 1

2
vz′p,

we get

I(k, p) =
−i16πm2α

(2π)4

∫ 1

0

3v2dv

∫

d4q

[q2 +A(p, k) + iε]
4

=
αm2

2π

∫ 1

0

v2dv

[A(p, k) + iε]2
(C.1)

with

A(p, k) = v(1− v)(k2 + p · k z′)− vm2

+
1

4
v(1− vz′2)M2 − (1− v)µ2 − vγ′.

Now we make in (C.1) the replacement k → k+βω and
substitute it in (12). The scalar products k2, p · k and also
(ω · k)/(ω · p), which the kernel depends on, are expressed
through the variables γ, z by eqs. (A.2). Since

A(p, k + βω) = A(p, k) + β′v(1− v)(z′ − z)

with β′ = (ω · p)β, we obtain

V (L)(γ, z; γ′, z′) =
−iαm2

2π2

×
∫ 1

0

v2dv

∫ ∞

−∞

dβ′
[

A(p, k) + β′v(1− v)(z′ − z) + iε
]2

× 1

[k2 + p · k − κ2 + (1− z)β′ + iε]

× 1

[k2 − p · k − κ2 − (1 + z)β′ + iε]
. (C.2)

Both z and z′ vary from −1 to 1. We consider two cases:
i) z′ < z and ii) z < z′. In the case i) the factor (z′ − z)
is negative and the (second-order) pole in the variable β ′

of the factor 1/ [A+ β′v(1− v)(z′ − z) + iε]
2
in (C.2) is

at the value β′ ∼ . . . + iε. We close the contour in the
lower half-plane, i.e. take the residue at the pole of the
first propagator:

β′ = −k
2 + p · k − κ2

1− z − iε.

This gives

V (L)(γ, z; γ′, z′) =W (γ, z; γ′, z′)

with

W (γ, z; γ′, z′) =
αm2(1− z)2

2π
[

γ + z2m2 + (1− z2)κ2
]

∫ 1

0

v2dv

D2

(C.3)

and

D = v(1− v)(1− z′)γ + v(1− z)γ′

+v(1− z)(1− z′)
[

1 + z(1− v) + vz′
]

κ2

+v
[

(1− v)(1− z′)z2 + vz′
2
(1− z)

]

m2

+(1− v)(1− z)µ2.

In the case ii) the factor (z′ − z) is posi-
tive and the pole in the variable β′ of the factor

1/ [A+ β′v(1− v)(z′ − z) + iε]
2
is at the value β′∼ . . .−iε.

We close the contour in the upper half-plane, i.e. take the
residue at the pole of the second propagator:

β′ =
k2 − p · k − κ2

1 + z
+ iε.

This gives

V (L)(γ, z; γ′, z′) =W (γ,−z; γ′,−z′)
with W defined in (C.3). The integral for W is calculated
analytically. In this way, we obtain eqs. (17), (18) for the
ladder kernel in eq. (10).
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